Real Numbers

2016

Short Answer Type Questions I [2 Marks]

Question 1.

Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times.

Solution:

Maximum capacity of a container, which can measure the petrol in exact number of times.

= HCF of (850 and 680)

$$\begin{array}{c|ccccc}
2 & 850 & 2 & 680 \\
\hline
5 & 425 & 2 & 340 \\
\hline
5 & 85 & 2 & 170 \\
\hline
& 17 & 5 & 85 \\
\hline
& 17 & 17 & 17 \\
\end{array}$$

$$850 = 2 \times 5 \times 5 \times 17$$

$$680 = 2 \times 2 \times 2 \times 5 \times 17$$

 $HCF = (850 \text{ and } 680) = 2 \times 5 \times 17 = 170 \text{ litres.}$

Question 2.

Find the value of: $(-1) + (-1)^{2n} + (-1)^{2n+1} + (-1)^{4n+1}$, where n is any positive odd integer.

Solution:

To find
$$(-1)^n + (-1)^{2n} + (-1)^{2n+1} + (-1)^{4n+2}$$

as 'n' is any positive odd integer

 \Rightarrow 2n and 4n + 2 are even positive integers.

Now

$$(-1)^n = -1$$

$$(-1)^{2n} = +1$$

$$(-1)^{2n+1} = (-1)^{2n}(-1)^1 = 1(-1) = -1$$

$$(-1)^{4n+2} = (-1)^{4n}(-1)^2 = 1(1) = 1$$

Put all values in the above expression (i)

We have -1+1-1+1=0

Question 3.

Find whether decimal expansion of 13/64 is a terminating or non-terminating decimal. If it

terminates, find the number of decimal places its decimal expansion has.

Solution:

The given rational number is	13 64	64)13.000000
Now	$\frac{13}{64} = \frac{13}{2^6} = \frac{13}{2^6 \times 5^0}$	$\frac{128}{200}$
The denominator of the given rational number is of the form		80
$2^{n} \times 5^{m}$, i.e. $2^{6} \times 5^{0}$		64
\therefore The decimal expansion of $\frac{13}{64}$ is of the form of terminating.		160
		128
The decimal expansion of $\frac{13}{64}$ terminates after 6 places of decimal.		320
The decimal expansion of $\frac{1}{64}$	terminates after o places of decimal.	320
		0

Short Answer Type Question II [3 Marks]

Question 4.

Explain whether the number 3 x 5 x 13 x 46 + 23 is a prime number or a composite number.

Solution:

We have
$$3 \times 5 \times 13 \times 46 + 23 = 23 \times (3 \times 5 \times 13 \times 2) + 23$$

= $23 \times (3 \times 5 \times 13 \times 2) + 23 = 23 \times 390 + 23$

It is clear that, the above number is a multiple of 23. Therefore, the number is $(3 \times 5 \times 13 \times 46 + 23)$ is not a prime number.

Long Answer Type Question [4 Marks]

Question 5.

Prove that the product of any three consecutive positive integers is divisible by 6. Solution:

Let three consecutive numbers are n, n + 1, n + 2

Solution:

1st Case: If n is even

This means n + 2 is also even.

Hence n and n + 2 are divisible by 2

Also, product of n and (n + 2) is divisible by 2.

.'. n(n + 2) is divisible by 2.

This conclude n(n + 2) (n + 1) is divisible by 2 ...(i)

As, n, n + 1, n + 2 are three consecutive numbers. n(n + 1) (n + 2) is a multiple of 3.

This shows n(n + 1) (n + 2) is divisible by 3. ...(ii)

By equating (i) and (ii) we can say

n(n + 1) (n + 2) is divisible by 2 and 3 both.

Hence, n(n + 1) (n + 2) is divisible by 6.

2nd Case: When n is odd.

This show (n + 1) is even

Hence (n + 1) is divisible by 2. ...(iii)

This conclude n(n + 1) (n + 2) is an even number and divisible by 2.

Also product of three consecutive number is a multiple of 3.

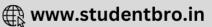
n(n + 1)(n + 2) is divisible by 3. ...(iv)

Equating (iii) and (iv) we can say

n(n + 1) (n + 2) is divisible by both 2 and 3 Hence, n(n + 1)(n + 2) is divisible by 6.

2015

Short Answer Type Questions I [2 Marks]



Question 6.

Apply Euclid's division algorithm to find HCF of numbers 4052 and 420.

Solution:

Given numbers are 4052 and 420.

On applying Euclid's division algorithm, we have $4052 = 420 \times 9 + 272$ $420 = 272 \times 1 + 148$ $272 = 148 \times 1 + 124$ $148 = 124 \times 1 + 24$ $124 = 24 \times 5 + 4$ $24 = 4 \times 6 + 0$ So, HCF of 4052 and 420 = 4. $420) \overline{4052} (9$ $\overline{272}) \overline{420} (1$ $\underline{272}$ $\overline{148}) \overline{272} (1$ $\overline{148}$ $\overline{124}) \overline{148} (1$ $\overline{124}$ $\overline{24}) \overline{124} (5$ $\underline{120}$

Question 7.

Show that $(\sqrt{3}+\sqrt{5})^2$ is an irrational number.

Solution:

We have to prove that $(\sqrt{3} + \sqrt{5})^2$ is an irrational number, i.e. to prove $(8 + 2\sqrt{15})$ is an irrational number.

Let us suppose $8+2\sqrt{15}$ is a rational number.

 \therefore There exists coprime integers (say) a and b, $b \neq 0$ such that

$$8 + 2\sqrt{15} = \frac{a}{b}$$

$$2\sqrt{15} = \frac{a}{b} - 8 \implies \sqrt{15} = \frac{a - 8b}{2b}$$

 $\frac{a-8b}{2b}$ being rational number so, $\sqrt{15}$ becomes rational, which is contradiction with

the fact that $\sqrt{15}$ is irrational. We led to contradiction due to wrong supposition. Hence, $(\sqrt{3} + \sqrt{5})^2$ is irrational.

Short Answer Type Question [3 Marks]

Question 8.

Three bells toll at intervals of 12 minutes, 15 minutes and 18 minutes respectively. If they start tolling together, after what time will they next toll together?

Solution:

LCM of 12, 15,
$$18 = 2^2 \times 3^2 \times 5$$

$$=4x9x5 = 180$$

So, next time the bells will ring together after 180 minutes.

2014

Short Answer Type Questions I [2 Marks]



Question 9.

If HCF of 144 and 180 is expressed in the form 13m - 3, find the value of m.

Solution:

On applying Euclid's division algorithm,

 $180 = 144 \times 1 + 36$

 $144 = 36 \times 4 + 0$

At the last stage, the divisor is 36.

∴ HCF of 144 and 180 is 36.

 $36 = 13 \times 3 - 3$

So, m = 3

On applying Euclid's division algorithm, $180 = 144 \times 1 + 36$

 $144 = 36 \times 4 + 0$

At the last stage, the divisor is 36.

.: HCF of 144 and 180 is 36.

 $: 36 = 13 \times 3 - 3$

So, m = 3

144)180 (1 144 36)144 (4 144 0

Question 10.

Show that 9ⁿ can not end with digit 0 for any natural number n.

Solution:

Since prime factorisation of 9^n is given by $9^n = (3 \times 3)^n = 3271$.

Prime factorisation of 9" contains only prime number 3.

9 may end with the digit 0 for some natural number V if 5 must be in its prime factorisation, which is not present.

So, there is no natural number N for which 9ⁿ ends with the digit zero.

Question 11.

Determine the values otp and q so that the prime factorisation of 2520 is expressible as 23 X y X q x 7 .

Solution:

Prime factorisation of 2520 is given by

2520 = 23 x 32 x 5 x 7

Given that $2520 = 23 \times 3p \times q \times 7$

On comparing both factorisation we get p = 2 and q = 5.

Question 12.

Show that 2√2 is an irrational number.

Solution:

Let us assume that $2\sqrt{2}$ is rational.

: There exists coprime integers a and b ($b \neq 0$) such that

$$2\sqrt{2} = \frac{a}{b} \Rightarrow \sqrt{2} = \frac{a}{2b}$$

Since a and b are integers, we get $\frac{a}{2b}$ is rational and so $\sqrt{2}$ is rational.

But this contradicts the fact that $\sqrt{2}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $2\sqrt{2}$ is rational. Hence, we conclude that $2\sqrt{2}$ is irrational.

Question 13.

Show that any positive odd integer is of the form 4m + 1 or 4m + 3, where m is some integer.



Let 'a' be any positive integer and b=4, then by Euclid's division algorithm, we have $a=4q+r, 0 \le r < 4$ where $q \ge 0$ and r=0, 1, 2, 3. Now 'a' may be of the form of 4q, 4q+1, 4q+2, 4q+3.

When
$$a = 4q$$
 When $a = 4q + 1$ $a = 4q + 1$ $a = 4q + 2$ $a = 4q + 3$ $a = 2.2q$ $a = 2m$ Where $m = 2q$ $a = 2m$ $a =$

Clearly, it is seen that any positive odd integer is of the form 4m + 1 or 4m + 3 for some integer m.

Short Answer Type Questions II [3 Marks]

Question 14.

By using, Euclid's algorithm, find the largest number which divides 650 and 1170.

Solution:

Given numbers are 650 and 1170.

On applying Euclid's division algorithm,

we get
$$1170 = 650 \times 1 + 520$$

∴ At the last stage, the divisor is 130.

∴ The HCF of 650 and 1170 is 130.

Question 15.

Show that reciprocal of 3+2√2 is an irrational number

Solution:

We have to prove that $\frac{1}{3+2\sqrt{2}} = 3-2\sqrt{2}$ is an irrational number.

Let us assume that $3 - 2\sqrt{2}$ is rational.

:. There exists coprime integers a and b ($b \neq 0$) such that

$$3 - 2\sqrt{2} = \frac{a}{b} \Rightarrow 2\sqrt{2} = 3 - \frac{a}{b}$$

$$\Rightarrow 2\sqrt{2} = \frac{3b - a}{b}$$

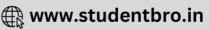
$$\Rightarrow \sqrt{2} = \frac{3b - a}{2b} = \frac{3}{2} - \frac{a}{2b}$$

Since a and b are integers, we get $\frac{3}{2} - \frac{a}{2b}$ is rational and so $\sqrt{2}$ is rational.

But this contradicts the fact that $\sqrt{2}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $3-2\sqrt{2}$ is rational. Hence, we conclude that $3-2\sqrt{2}$ is irrational.

Long Answer Type Question [4 Marks]



Question 16.

Find HCF of 378,180 and 420 by prime factorisation method. Is HCF x LCM of three numbers equal to the product of the three numbers?

Solution:

```
378 = 2 \times 33 \times 7
180 = 22 \times 32 \times 5
420 = 22 x 3 x 5 x 7
\therefore HCF (378, 180, 420) = 2 x 3 = 6.
No. HCF (p, q, r) \times LCM(p, q, r) \neq p \times q \times r. where p, q, r are positive integers.
```

2013

Short Answer Type Questions I [2 Marks]

Question 17.

Find the HCF of 255 and 867 by Euclid's division algorithm

Solution:

Given numbers are 255 and 867.

On applying Euclid's division algorithm, we have

```
867 = 255 \times 3 + 102
255 = 102 x 2 + 51
102 = 51 \times 2 + 0
\because At the last stage, the divisor is 51
\therefore The HCF of 255 and 867 is 51.
255)867(3
      765
      102)255(2
           204
            51)102(2
```

7 2

Question 18.

Find the HCF (865, 255) using Euclid's division lemma.

Given numbers are 255 and 865.

102 0

On applying Euclid's division algorithm, we have

```
865 = 255 \times 3 + 100
255 = 100 \times 2 + 55
100 = 55 \times 1 + 45
55 = 45 \times 1 + 10
45 = 10 \times 4 + 5
10 = 5 \times 2 + 0
```

∵At the last stage, the divisor is 5

 \therefore The HCF of 255 and 865 is 5.

Short Answer Type Questions II [3 Marks]

Question 19.

Find HCF of 65 and 117 and find a pair of integral values of m and n such that HCF = 65m + 117n.

Solution:

Given numbers are 65 and 117.

On applying Euclid's division algorithm, we get

$$117 = 65 \times 1 + 52$$

 $65 = 52 \times 1 + 13$
 $52 = 13 \times 4 + 0$

 \because At the last stage, the divisor is 13.

 \therefore The HCF of 65 and 117 is 13.

The required pair of integral values of m and n is

(2,-1) which satisfies the given relation HCF = 65m + 117n.

Question 20.

Solution:

By using Euclid's algorithm, find the largest number which divides 650 and 1170

Since prime factorisation of 9^n is given by $9^n = (3 \times 3)^n = 3271$.

Prime factorisation of 9" contains only prime number 3.

9 may end with the digit 0 for some natural number V if 5 must be in its prime factorisation, which is not present.

So, there is no natural number N for which 9ⁿ ends with the digit zero.

2012

Short Answer Type Question I [2 Marks]

Question 21.

$$\frac{241}{4000} = \frac{241}{777}$$

If 4000° $2^{m}5^{n}$ find the values of m and n where m and n are non-negative integers. Hence write its decimal expansion without actual division.

Solution:

$$\frac{241}{4000} = \frac{241}{2^m \cdot 5^n} \Rightarrow 4000 = 2^m \cdot 5^n$$

$$2^5 \times 5^3 = 2^m \cdot 5^n \Rightarrow m = 5, n = 3$$

$$\frac{241}{4 \times 1000} = \frac{1}{4} \times 0.241 = 0.06025 \text{ (Terminating)}.$$

Short Answer Type Questions II [3 Marks]

Question 22.

Express the number 0.3178 in the form of rational number a/b.

Solution:

Let
$$x = 0.3\overline{178}$$

$$\Rightarrow 10x = 3.\overline{178} \qquad ...(i)$$

$$\Rightarrow 10000x = 3178.\overline{178} \qquad ...(ii)$$
Subtracting (i) from (ii)
$$\Rightarrow 9990x = 3175$$

$$x = \frac{635}{1998}$$

Question 23.

Using Euclid's division algorithm, find whether the pair of numbers 847,2160 are coprimes or not.

Solution:

$$2160 = 847 \times 2 + 466$$

$$847 = 466 \times 1 + 381$$

$$466 = 381 \times 1 + 85$$

$$381 = 85 \times 4 + 41$$

$$85 = 41 \times 2 + 3$$

$$41 = 3 \times 13 + 2$$

$$3 = 2 \times 1 + 1$$

$$1 = 1 + 0$$

$$HCF = 1$$

Numbers 847 and 2160 are coprimes.

Question 24.

The LCM of two numbers is 14 times their HCF. The sum of LCM and HCF is 600. If one number is 280, then find the other number.

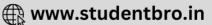
Solution:

Let HCF =
$$x$$

 \therefore LCM = 14 x
A.T.Q. $x + 14x = 600 \Rightarrow x = 40$
Now, 280 × other number = HCF × LCM = 40 × 560
Other number = 80

2011

Short Answer Type Questions I [2 Marks]



Question 25.

Prove that $15 + 17\sqrt{3}$ is an irrational number.

Solution:

Let $15 + 17\sqrt{3}$ is a rational number.

$$\therefore$$
 15 + 17 $\sqrt{3} = \frac{a}{b}$, where a and b are coprime, $b \neq 0$

$$\Rightarrow$$

$$17\sqrt{3} = \frac{a}{b} - 15 \implies \sqrt{3} = \frac{a - 15b}{17b}$$

$$\therefore$$
 a and b are integers

So,
$$\frac{a-15b}{17b}$$
 is a rational number and so, $\sqrt{3}$ is rational.

But this contradicts the fact that $\sqrt{3}$ is irrational. This contradiction has arisen because of our incorrect assumption that $15 + 17\sqrt{3}$ is rational.

Hence, $15 + 17\sqrt{3}$ is irrational.

Question 26.

Find the LCM and HCF of 120 and 144 by using Fundamental Theorem of Arithmetic.

Solution:

$$120 = 23 \times 3 \times 5$$

$$144 = 24 \times 32$$

$$LCM = 24 \times 5 \times 32 = 720$$

Short Answer Type Questions II [3 Marks]

Question 27.

An army contingent of 1000 members is to march behind an army band of 56 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?

Solution:

$$56 = 2x2x2x7$$

Maximum number of columns = 8.

Question 28.

Show that any positive odd integer is of the form 4q + 1 or 4q + 3 where q is a positive integer.

Solution:

Let N be any positive integer and b = 4

Then by Euclid's division lemma, N = 4q + r, $0 \le r < 4$; q > 0

$$N = 4q \text{ or } 4q + 1 \text{ or } 4q + 2 \text{ or } 4q + 3$$

(i) when
$$N = 4q = 2(2q) = \text{even}$$

(ii) when
$$N = 4q + 1 = 2(2q) + 1 = \text{even} + 1 = \text{odd}$$

(iii) when
$$N = 4q + 2 = 2(2q + 1) = \text{even}$$

(iv) when
$$N = 4q + 3 = 4q + 2 + 1 = 2(2q + 1) + 1 = \text{Even} + 1 = \text{odd}$$

$$\therefore$$
 When $N = 4q + 1$ or $4q + 3$, then it is odd

 \Rightarrow Any positive odd integer is of the form 4q + 1 or 4q + 3.

Question 29.

Prove that 2√3/5 is irrational

Let $\frac{2\sqrt{3}}{5}$ is rational.

 \therefore There exists coprime integers a and $b(b \neq 0)$

Such that
$$\frac{2\sqrt{3}}{5} = \frac{a}{b} \implies \sqrt{3} = \frac{5a}{2b}$$

 \therefore a and b are integers we get $\frac{5a}{2b}$ is rational and so $\sqrt{3}$ is rational.

But this contradicts the fact that $\sqrt{3}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $\frac{2\sqrt{3}}{5}$ is rational. So, we conclude that $\frac{2\sqrt{3}}{5}$ is irrational.

2010

Very Short Answer Type Questions [1 Mark]

Question 30.

Has the rational number $\overline{2^2 \cdot 5^7 \cdot 7^2}$, a terminating or a non-terminating decimal repressentation

Solution:

$$\frac{441}{2^2 \cdot 5^7 \cdot 7^2}$$
 is non-terminating decimal.

Since $q = 2^2 \times 5^7 \times 7^2$ is not of the form $2^m \times 5^n$.

Question 31.

$$\frac{2\sqrt{45}+3\sqrt{20}}{\sqrt{20}}$$

Write whether

 $\frac{2\sqrt{45} + 3\sqrt{20}}{2\sqrt{5}}$ on simplification gives a rational or an irrational number.

Solution:

$$\frac{2\sqrt{45} + 3\sqrt{20}}{2\sqrt{5}} = \frac{2\sqrt{9 \times 5} + 3\sqrt{4 \times 5}}{2\sqrt{5}} = \frac{6\sqrt{5} + 6\sqrt{5}}{2\sqrt{5}} = \frac{12\sqrt{5}}{2\sqrt{5}}$$

= 6 which is rational number.

Question 32.

The HCF of 45 and 105 is 15. Write their LCM.

Solution:

HCF (45, 105) = 15

$$\therefore LCM = \frac{45 \times 105}{15} = 315$$

Short Answer Type Questions II [3 Marks]

Question 33.

Prove that 2-3√5 is an irrational number.

Let us assume, to contrary that $2 - 3\sqrt{5}$ is rational

Let $2 - 3\sqrt{5} = \frac{a}{b}$ where a and b are coprime numbers, $b \neq 0$

$$2 - \frac{a}{b} = 3\sqrt{5}$$

$$\frac{2b-a}{3b} = \sqrt{5}$$

Since a and b are integers, we get $\frac{2b-a}{3b}$ is rational, and so $\sqrt{5}$ is rational.

But this contradicts the fact that $\sqrt{5}$ is irrational. This contradiction has arisen because of our incorrect assumption that $2 - 3\sqrt{5}$ is rational.

So, we conclude that $2 - 3\sqrt{5}$ is irrational.

Question 34.

Prove that $2\sqrt{3} - 1$ is an irrational number.

Solution:

Let $2\sqrt{3} - 1$ is a irrational number.

$$\therefore 2\sqrt{3} - 1 = \frac{a}{b}, \text{ where } a \text{ and } b \text{ are coprimes and } b \neq 0$$

$$\Rightarrow 2\sqrt{3} = \frac{a}{b} + 1 \Rightarrow 2\sqrt{3} = \frac{a+b}{b}$$

$$\Rightarrow \qquad \sqrt{3} = \frac{a+b}{2b} \qquad \dots(i)$$

From (i), we notice

LHS is an irrational number and RHS is rational number, which is not possible. Hence, our supposition is wrong. Hence, $2\sqrt{3} - 1$ is an irrational number.

Question 35.

Prove that $\sqrt{2}$ is irrational.

Solution:

Let us assume that $\sqrt{2}$ is rational.

 \therefore There exists coprime integers a and b (b \neq 0)

Such that

$$\sqrt{2} = \frac{a}{b} \implies \sqrt{2}b = a$$

Squaring on both sides, we get

 \Rightarrow 2 divides $a^2 \Rightarrow$ 2 divides a

So, we can write

$$a = 2c$$
 for some integer c ...(ii)

From (i) and (ii),

$$2b^2 = 4c^2 \Rightarrow b^2 = 2c^2$$

 \Rightarrow 2 divides $b^2 \Rightarrow$ 2 divides b

 \therefore 2 is a common factor of a and b.

But this contradicts the fact that a and b are coprimes.

This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational. Hence, $\sqrt{2}$ is irrational.

Question 36.

Prove that $7 - 2\sqrt{3}$ is an irrational number.



Let, $7-2\sqrt{3}$ be a rational number.

Let
$$7-2\sqrt{3}=\frac{a}{b}$$
, where a and b are coprimes and $b\neq 0$

$$\Rightarrow \qquad 7 - \frac{a}{b} = 2\sqrt{3} \Rightarrow \frac{7b - a}{b} = 2\sqrt{3} \Rightarrow \frac{7b - a}{2b} = \sqrt{3}$$

We notice that LHS is a rational number, whereas RHS is an irrational number, which is a contradiction. Hence, our supposition is wrong.

Hence, $7 - 2\sqrt{3}$ is an irrational number.

Question 37.

Show that $5 + 3\sqrt{2}$ is an irrational number.

Solution:

Let us assume $5 + 3\sqrt{2}$ is an irrational number.

There exists coprime integers a and b (b≠0)

Such that

$$5 + 3\sqrt{2} = \frac{a}{b}$$

$$3\sqrt{2} = \frac{a}{b} - 5 \Rightarrow \sqrt{2} = \frac{a - 5b}{3b}$$

a and b are integers we get $\frac{a-5b}{3b}$ is rational number and so $\sqrt{2}$ is rational.

But this contradicts the fact that $\sqrt{2}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $5+3\sqrt{2}$ is rational. So, we conclude that $5+3\sqrt{2}$ is irrational.

2009

Very Short Answer Type Questions [1 Mark]

Question 38.

The decimal expansion of the rational number will terminate after how many places of decimals.

Solution:

The decimal expansion of the rational number $\frac{43}{2^4.5^3}$, will terminate after 4 places of decimal.

$$\frac{43}{2^4 \cdot 5^3} = \frac{43}{16 \times 125} = \frac{43}{2000} = 0.0215$$

Question 39.

Find the [HCF X LCM] for the numbers 100 and 190.

Solution

 $HCF \times LCM = one number \times another number$

 $= 100 \times 190 = 19000$

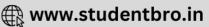
Question 40.

Find the [HCF and LCM] for the numbers 105 and 120. [All India]

Solution:

 $105 = 5 \times 7 \times 3$

120 = 2x2x2x3x5



Question 41.

Write whether the rational number $\overline{1500}$ will have a terminating decimal expansion or a non terminating repeating decimal expansion.

Solution:

$$\frac{51}{1500} = \frac{17}{500}$$

Prime factorisation of $500 = 2 \times 2 \times 5 \times 5 \times 5 = 2^2 \times 5^3$

Its denominator has prime factors of the form $2^m \times 5^n$

So, it has terminating decimal expansion.

Question 42.

The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45, write the other number.

Solution:

Let another number = x

HCF (45, x) = 9
LCM (45, x) = 360
HCF × LCM = 45 × x
9 × 360 = 45 × x

$$x = \frac{360}{5} = 72$$

Short Answer Type Questions II [3 Marks]

Question 43.

Show that $5 - 2\sqrt{3}$ is an irrational number.

Solution:

Let us assume that $5 - 2\sqrt{3}$ is rational number.

.. There exists coprime integers a and b ($b \neq 0$) such that

$$5 - 2\sqrt{3} = \frac{a}{b}$$

$$\Rightarrow 2\sqrt{3} = 5 - \frac{a}{b} \Rightarrow \sqrt{3} = \frac{5b - a}{2b}$$

a and b are integers, we get $\frac{5b-a}{2b}$ is rational and so $\sqrt{3}$ is rational.

But this contradicts the fact that $\sqrt{3}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $5-2\sqrt{3}$ is rational.

So, we conclude that $5-2\sqrt{3}$ is irrational.

Question 44.

Show that $3 + 5\sqrt{2}$ is an irrational number.

Let us assume that $3+5\sqrt{2}$ is rational number.

 \therefore There exists coprime integers a and b (b \neq 0)

Such that
$$3+5\sqrt{2} = \frac{a}{b}$$

$$\Rightarrow 5\sqrt{2} = \frac{a}{b} - 3 \Rightarrow \sqrt{2} = \frac{a - 3b}{5b}$$

 \therefore a and b are integers we get $\frac{a-3b}{5b}$ is rational number and so $\sqrt{2}$ is rational.

But this contradicts the fact that $\sqrt{2}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $3 + 5\sqrt{2}$ is rational. So, we conclude that $3 + 5\sqrt{2}$ is irrational.

Question 45.

Show that the square of any positive odd integer is of the form 8m + 1, for some integer m. **Solution:**

Let a = 2q + 1 be any positive odd integer.

Now,

$$a^{2} = (2q + 1)^{2}$$

$$= 4q^{2} + 4q + 1$$

$$= 4q(q + 1) + 1$$

$$= 4(2m) + 1$$
 [: q and (q + 1) are consecutive numbers, so one of them must be even and of the form 2m.]

 \therefore Square of any positive odd integer is of the form 8m + 1, for some integer m.

Question 46.

Prove that $7 + 3\sqrt{2}$ is not a rational number.

Solution:

Let $7 + 3\sqrt{2}$ be rational

$$\Rightarrow$$
 7 + 3 $\sqrt{2} = \frac{p}{q}$, where $q \neq 0$ and p and q are coprimes

$$\Rightarrow 3\sqrt{2} = \frac{p}{q} - 7$$

$$\Rightarrow \qquad \sqrt{2} = \frac{p - 7q}{3q}$$

Here, on RHS $\frac{p-7q}{3q}$ is rational, whereas $\sqrt{2}$ is irrational.

Therefore, our assumption is wrong.

Hence, $7 + 3\sqrt{2}$ is irrational.

